Бизнес. Кредиты. Прописка. Материнство. Алименты

Структура льда и воды отличие. Чем отличаются молекулы воды и молекулы льда? Миллионы квадратных километров льда

Сегодня мы будем говорить про свойства снега и льда. Стоит уточнить, что лед образуются не только из воды. Кроме водяного льда бывает аммиачный и метановый. Не так давно ученые изобрели сухой лед. Свойства его уникальны, их рассмотрим чуть позже. Он образуется при замораживании углекислоты. Свое название сухой лёд получил благодаря тому, что при таянии он не оставляет луж. Находящийся в его составе углекислый газ тут же испаряется в воздух из замороженного состояния.

Определение льда

Прежде всего, подробнее рассмотрим лед, который получают из воды. Внутри него правильная кристаллическая решетка. Лед - это распространенный природный минерал, получаемый во время замерзания воды. Одна молекула этой жидкости связывается с четырьмя ближайшими. Ученые заметили, что такое внутреннее строение присуще различным драгоценным камням и даже минералам. Например, такое строение имеет алмаз, турмалин, кварц, корунд, берилл и другие. Молекулы удерживаются на расстоянии кристаллической решеткой. Эти свойства воды и льда говорят о том, что плотность такого льда будет меньше плотности воды, благодаря которой он образовался. Поэтому лед плавает на поверхности воды и не тонет в ней.

Миллионы квадратных километров льда

А вы знаете, сколько льда на нашей планете? Согласно последним исследованиям ученых, на планете Земля имеется примерно 30 миллионов квадратных километров замороженной воды. Как вы уже догадались, основная масса этого природного минерала находится на полярных шапках. В некоторых местах толщина ледяного покрова достигает 4 км.

Как получить лед

Сделать лед совсем несложно. Этот процесс не составит большого труда, как и не требует особых навыков. Для этого необходима низкая температура воды. Это единственное неизменное условие процесса образования льда. Вода замерзнет тогда, когда ваш термометр покажет температуру ниже 0 градусов по Цельсию. В воде начинается процесс кристаллизации благодаря низким температурам. Молекулы ее строятся в интересную упорядоченную структуру. Этот процесс называют образованием кристаллической решетки. Он одинаков и в океане, и в луже, и даже в морозильной камере.

Исследования процесса замерзания

Проводя исследование на тему замерзания воды, ученые пришли к выводу, что кристаллическая решетка выстраивается в верхних слоях воды. На поверхности начинают образовываться микроскопические ледяные палочки. Чуть позже между собой они смерзаются. Благодаря этому образуется тончайшая пленка на поверхности воды. Крупные водоемы замерзают намного дольше по сравнению с неподвижной водой. Это связано с тем, что ветер колышет и колеблет поверхность озера, пруда или реки.

Ледяные блины

Ученые провели ещё одно наблюдение. Если при низкой температуре продолжается волнение, то тончайшие пленки собираются в блины диаметром около 30 см. Далее они смерзаются в один слой, толщина которого не меньше 10 см. На ледяные блины сверху и снизу намерзает новый слой льда. Так образуется толстый и прочный ледяной покров. Его прочность зависит от видов: самый прозрачный лед будет в несколько раз прочнее белого льда. Экологи заметили, что 5-сантиметровый лёд выдерживает вес взрослого человека. Слой в 10 см способен выдержать легковую машину, но следует помнить, что выходить на лед в осеннее и весеннее время очень опасно.

Свойства снега и льда

Физики и химики долгое время изучали свойства льда и воды. Самое известное, а также важное свойство льда для человека - это его способность легко таять уже при нулевой температуре. Но для науки важны и другие физические свойства льда:

  • лед обладает прозрачностью, поэтому он хорошо пропускает солнечный свет;
  • бесцветность - лед не имеет цвета, но его с легкостью можно покрасить при помощи цветных добавок;
  • твердость - ледяные массы прекрасно сохраняют форму без каких-либо наружных оболочек;
  • текучесть - это частное свойство льда, присущее минералу только в некоторых случаях;
  • хрупкость - кусок льда можно с легкостью расколоть, не прикладывая больших усилий;
  • спайность - лед с легкостью раскалывается в тех местах, где он сросся по кристаллографической линии.

Лед: свойства вытеснения и чистоты

По своему составу у льда высокая степень чистоты, так как кристаллическая решетка не оставляет свободного места различным посторонним молекулам. Когда вода замерзает, то она вытесняет различные примеси, которые в ней когда-то растворились. Таким же образом можно получить очищенную воду в домашних условиях.

Но некоторые вещества способны затормаживать процесс замерзания воды. Например, соль в морской воде. Лёд в море образуется только при очень низких температурах. Удивительно, но процесс замерзания воды каждый год способен поддерживать самоочищение от разных примесей в течение многих миллионов лет подряд.

Секреты сухого льда

Особенности этого льда в том, что в своём составе он имеет углерод. Такой лед образуется только при температуре -78 градусов, но тает он уже при -50 градусах. Сухой лед, свойства которого позволяют пропустить стадию жидкостей, при нагревании сразу образуется пар. Сухой лед, как и его собрат - водяной, не имеет запаха.

А вы знаете, где применяют сухой лед? Благодаря его свойствам, этот минерал используют при транспортировке продуктов питания и медикаментов на дальние расстояния. А гранулы этого льда способны потушить воспламенение бензина. Ещё, когда сухой лед тает, он образует густой туман, поэтому его применяют на съемочных площадках для создания спецэффектов. Помимо всего перечисленного, сухой лед можно брать с собой в поход и в лес. Ведь когда он тает, то отпугивает комаров, различных вредителей и грызунов.

Что касается свойств снега, то эту удивительную красоту мы можем наблюдать каждую зиму. Ведь каждая снежинка имеет форму шестигранника - это неизменно. Но помимо шестиугольной формы, снежинки могут выглядеть по-разному. На формирование каждой из них влияет влажность воздуха, атмосферное давление и другие природные факторы.

Свойства воды, снега, льда удивительны. Важно знать ещё несколько свойств воды. Например, она способна принимать форму сосуда, в который ее наливают. При замерзании вода расширяется, а также у нее есть память. Она способна запоминать окружающую энергетику, а при замерзании она «сбрасывает» информацию, которую в себя впитала.

Мы рассмотрели природный минерал - лед: свойства и его качества. Продолжайте изучать науку, это очень важно и полезно!

Понятие молекулы (и производные от него представления о молекулярном строении вещества, структуры собственно молекулы) позволяет понимать свойства веществ создающих мир. Современные, как и ранние, физико-химические исследования опираются и базируются на грандиозном открытие об атомно-молекулярном строении вещества. Молекула – единая «деталь» всех веществ, существование которой предположил ещё Демокрит. Потому именно её структура и взаимосвязь с другими молекулами (образуя определенное строение и состав) и определяет/объясняет все различия между веществами, их видом и свойствами.

Сама молекула, будучи не самой мельчайшей составной частью вещества (коей является атом) имеет определенную структуру, свойства. Определяется структура молекулы числом вхожих в неё определенных атомов и характером связи (ковалентной) между ними. Состав этот неизменен, даже если вещество преобразуется в другое состояние(как примеру, происходит с водой – об этом пойдет речь дальше).

Молекулярное строение вещества фиксируется формулой, которая сообщает информацию об атомах, их количестве. Кроме того, молекулы составляющие вещество/тело не статичны: и сами являются подвижными – атомы вращаются, взаимодействуя между собой (притягиваются/отталкиваются).

Характеристики воды, её состояния

Состав такого вещества, как вода (равно как и её химическая формула) знаком каждому. Каждую её молекулу составляют три атома: атом кислорода, обозначающийся буквой «О», и атомы водорода – латинская «Н», в количестве 2-х. Форма молекулы воды не симметрична (схожа с равнобедренным треугольником).

Вода, как вещество, составляющие её молекулы, реагирует на внешнюю «обстановку», показатели окружающей среды — температуру, давление. Зависимо от последних вода способна изменять состояние, которых три:

  1. Наиболее привычное, естественное для воды состояние жидкое. Молекулярная структура (дигидроль) своеобразного порядка, при котором одиночные молекулы заполняют (водородными связями) пустоты.
  2. Состояние пара, при котором молекулярная структура (гидроль) представлена одиночными молекулами между которыми не образуются водородные связи.
  3. Твердое состояние (собственно лед), имеет молекулярную структуру (тригидроль) с прочными и устойчивыми водородными связями.

Помимо данных различий, естественно, разнятся и способы «перехода» вещества из одного состояния (жидкого) в другие. Эти переходы и трансформируют вещество, и провоцируют передачу энергии (выделение/поглощение). Среди них есть процессы прямые – преобразование жидкой воды в пар (испарение), в лед (замерзание) и обратные – в жидкость из пара (конденсация), из льда (таяние). Также и состояния воды — парообразное и лед — могут трансформироваться друг в друга: возгонка – лед в пар, сублимация – обратный процесс.

Специфичность льда как состояния воды

Широко известно, что лед замерзает (трансформируется из воды) при пересечении температурой в сторону уменьшения границы в ноль градусов. Хотя, в этом всем понятном явлении, есть свои нюансы. К примеру, состояние льда неоднозначно, различны его виды, модификации. Отличаются они первоочередно условиями, при которых возникают – температурой, давлением. Таких модификаций насчитывается аж пятнадцать.

Лед в разных своих видах имеет различное молекулярное строение (молекулы же неотличимы от молекул воды). Природный и естественный лед, в научной терминологии обозначающийся как лед Ih — вещество с кристаллической структурой. То есть, каждая молекула с четырьмя окружающими её «соседками» (расстояние между всеми равное) создают геометрическую фигуру тетраэдр. Другие фазы льда обладают более сложной структурой, к примеру высокоупорядоченная структура тригонального, кубического или моноклинного льда.

Основные отличия льда от воды на молекулярном уровне

Первое и напрямую не относящееся к молекулярному строению воды и льда различие между ними – показатель плотности вещества. Кристаллическая структура, присущая льду, образовываясь, способствует одновременному уменьшению плотности (с показателя почти в 1000 кг/м³ до 916,7 кг/м³). А это стимулирует увеличение объема на 10%.


Основное же отличие в молекулярном строении этих агрегатных состояний воды (жидкого и твердого) в количестве, виде и силе водородных связей между молекулами . Во льду же (твердом состоянии) ими объединены пять молекул, а собственно связи водородные прочнее.

Сами молекулы веществ воды и льда, как упоминалось ранее, одинаковы. Но в молекулах льда атом кислорода (для создания кристаллической «решетки» вещества) образовывает водородные связи (две) с молекулами-«соседками».

Отличает вещество воды в разных её состояниях (агрегатных) не только структура расположения молекул (молекулярное строение), но и движение их, сила взаимосвязи/притяжения между ними. Молекулы воды в жидком состоянии достаточно слабо притягиваются, обеспечивая текучесть воды. В твердом же льду наиболее сильно притяжение молекул, потому и мала их двигательная активность (она обеспечивает постоянство формы льда).

Кристаллическая структура льда: молекулы воды соединены в правильные шестиугольники Кристаллическая решётка льда: Молекулы воды H 2 O (чёрные шарики) в её узлах расположены так, что каждая имеет четырёх соседок. Молекула воды (в центре) связана с четырьмя ближайшими соседними молекулами водородными связями. Лёд – кристаллическая модификация воды. По последним данным лёд имеет 14 структурных модификаций. Среди них есть и кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии, образуются в условиях экзотических при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда. Самое необычное свойство льда это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс.


Снежинка это монокристалл льда – разновидность гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются учёные. Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинаю т расти одинаковые ледяные иголочки боковые отростки, т.к. температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки веточки. Подобные кристаллы называют дендритами, то есть похожими на дерево. Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. До сих пор не удалось найти среди снежинок двух одинаковых.


Цвет льда зависит от его возраста и может быть использован для оценки его прочности. Океанический лед в первый год своей жизни белый, потому что он насыщен воздушными пузырьками, от стенок которых свет отражается сразу же, не успев поглотиться. Летом поверхность льда тает, теряет прочность, и под тяжестью ложащихся сверху новых слоев пузырьки воздуха сжимаются и исчезают совсем. Свет внутри льда проходит больший путь, чем прежде, и выходит наружу, имея голубовато-зеленый оттенок. Голубой лед старше, плотнее и прочнее белого «пенистого», насыщенного воздухом. Полярные исследователи это знают и выбирают для своих плавучих баз, научных станций и ледовых аэродромов надежные голубые и зеленые льдины. Бывают черные айсберги. Первое сообщение в печати о них появилось в 1773 г. Черный цвет айсбергов вызван деятельностью вулканов - лёд покрыт толстым слоем вулканической пыли, которая не смывается даже морской водой. Лед неодинаково холоден. Есть очень холодный лед, с температурой около минус 60 градусов, это лед некоторых антарктических ледников. Намного теплее лед гренландских ледников. Его температура равна примерно минус 28 градусам. Совсем "теплые льды" (с температурой около 0 градусов) лежат на вершинах Альп и Скандинавских гор.


Плотность воды максимальна при +4 C и равна 1 г/мл, при понижении температуры уменьшается. При кристаллизации воды плотность резко уменьшается, для льда она равна 0,91 г/см 3. Благодаря этому лед легче воды и при замерзании водоёмов лед скапливается сверху, а на дне водоёмов оказывается более плотная вода с температурой 4 ̊ С. Плохая теплопроводность льда и покрывающего его снежного покрова предохраняет водоёмы от замерзания до дна и создаёт тем самым условия для жизни обитателей водоёмов зимой.




Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. Лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору. Природный лёд обычно значительно чище, чем вода, т.к. растворимость веществ (кроме NH4F) во льде крайне низкая. Общие запасы льда на Земле около 30 млн. км 3. Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км.

Лёд - минерал с хим. формулой H 2 O , представляет собой воду в кристаллическом состоянии.
Химический состав льда: Н — 11,2%, О — 88,8%. Иногда содержит газообразные и твердые механические примеси.
В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С. Известны 10 кристаллических модификаций льда и аморфный лёд. Наиболее изученным является лёд 1-й модификации - единственная модификация, обнаруженная в природе. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного и др.), а также в виде снега, инея и т.д.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура льда похожа на структуру : каждая молекула Н 2 0 окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76Α и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является ажурной, что влияет на его плотность (0,917). Лед имеет гексагональную пространственную решётку и образуется путём замерзания воды при 0°С и атмосферном давлении. Решётка всех кристаллических модификаций льда имеет тетраэдрическое строение. Параметры элементарной ячейки льда (при t 0°С): а=0,45446 нм, с=0,73670 нм (с - удвоенное расстояние между смежными основными плоскостями). При понижении температуры они меняются крайне незначительно. Молекулы Н 2 0 в решётке льда связаны между собой водородными связями. Подвижность атомов водорода в решётке льда значительно выше подвижности атомов кислорода, благодаря чему молекулы меняют своих соседей. При наличии значительных колебательных и вращательных движений молекул в решётке льда возникают трансляционные соскоки молекул из узла пространственной их связи с нарушением дальнейшей упорядоченности и образованием дислокаций. Этим объясняется проявление у льда специфических реологических свойств, характеризующих зависимость между необратимыми деформациями (течением) льда и вызвавшими их напряжениями (пластичность, вязкость, предел текучести, ползучесть и др.). В силу этих обстоятельств ледники текут аналогично сильно вязким жидкостям, и, таким образом, природные льды активно участвуют в круговороте воды на Земле. Кристаллы льда имеют относительно крупные размеры (поперечный размер от долей миллиметра до нескольких десятков сантиметров). Они характеризуются анизотропией коэффициента вязкости, величина которого может меняться на несколько порядков. Кристаллы способны к переориентации под действием нагрузок, что влияет на их метаморфизацию и скорости течения ледников.

СВОЙСТВА

Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309). В природе известны 14 модификаций льда. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии и обозначающегося как лёд I , образуются в условиях экзотических - при очень низких температурах (порядка -110150 0С) и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров - это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

МОРФОЛОГИЯ

В природе лёд — очень распространенный минерал. В земной коре существует несколько разновидностей льда: речной, озёрный, морской, грунтовый, фирновый и глетчерный. Чаще он образует агрегатные скопления мелкокристаллических зерен. Известны также кристаллические образования льда, возникающие сублимационным путем, т. е. непосредственно из парообразного состояния. В этих случаях лед имеет вид скелетных кристаллов (снежинки) и агрегатов скелетного и дендритного роста (пещерный лёд, изморозь, иней и узоры на стекле). Крупные хорошо огранённые кристаллы встречаются, но очень редко. Н. Н. Стуловым описаны кристаллы льда северо-восточной части России, встреченные на глубине 55-60 м. от поверхности, имеющие изометрический и столбчатый облик, причем длина наибольшего кристалла равнялась 60 см., а диаметр его основания - 15 см. Из простых форм на кристаллах льда выявлены только грани гексагональной призмы (1120), гексагональной бипирамиды (1121) и пинакоида (0001).
Ледяные сталактиты, называемые в просторечии «сосульки», знакомы каждому. При перепадах температур около 0° в осенне-зимние сезоны они растут повсеместно на поверхности Земли при медленном замерзании (кристаллизации) стекающей и капающей воды. Они обычны также в ледяных пещерах.
Ледяные забереги представляют собой полосы ледяного покрова из льда, кристаллизующегося на границе вода-воздух вдоль краёв водоёмов и окаймляющие края луж, берега рек, озёр, прудов, водохранилищ, и тп. при незамерзающей остальной части водного пространства. При их полном срастании на поверхности водоёма образуется сплошной ледяной покров.
Лёд образует также параллельно-шестоватые агрегаты в виде волокнистых прожилков в пористых грунтах, а на их поверхности — ледяные антолиты.

ПРОИСХОЖДЕНИЕ

Лёд образуется в основном в водных бассейнах при понижении температуры воздуха. На поверхности воды при этом появляется ледяная каша, сложенная из иголочек льда. Снизу на неё нарастают длинные кристаллики льда, у которых оси симметрии шестого порядка размещаются перпендикулярно к поверхности корочки. Соотношения между кристаллами льда при разных условиях образования показаны на рис. Лед распространен всюду, где имеется влага и где температура опускается ниже 0° С. В некоторых районах грунтовый лед оттаивает только на незначительную глубину, ниже которой начинается вечная мерзлота. Это так называемые районы вечной мерзлоты; в областях распространения многолетнемерзлых пород в верхних слоях земной коры встречаются так называемые подземные льды, среди которых различают современный и ископаемый подземный лёд. Не менее 10% всей площади суши Земли покрывают ледники, слагающая их монолитная ледяная порода носит название ледниковый лёд. Ледниковый лёд образуется в основном из скопления снега в результате его уплотнения и преобразования. Ледниковый покров занимает около 75% площади Гренландии и почти всю Антарктиду; самая большая мощность ледников (4330 м.) – установлена близ станции Бэрд (Антарктида). В центральной Гренландии толщина льда достигает 3200 м.
Месторождения льда общеизвестны. В местностях с холодной долгой зимой и коротким летом, а также в высокогорных районах образуются ледяные пещеры со сталактитами и сталагмитами, среди которых наиболее интересными являются Кунгурская в Пермской области Приуралья, а также пещера Добшине в Словакии.
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см 3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3° С; он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.

ПРИМЕНЕНИЕ

В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения. Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округлой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5-7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10-15 до 30-45 минут.
Использование льда в качестве конструкционного материала широко распространено в приполярных регионах для строительства жилищ - иглу. Лёд входит в состав предложенного Д. Пайком материала Пайкерит, из которого предлагалось сделать самый большой в мире авианосец.

Лед (англ. Ice) — H 2 O

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 4/A.01-10
Nickel-Strunz (10-ое издание) 4.AA.05
Dana (8-ое издание) 4.1.2.1
Hey’s CIM Ref. 7.1.1

Положительные заряды в молекуле воды связаны с атомами

водорода. Отрицательные заряды - это валентные электроны

кислорода. Их взаимное расположение в молекуле воды можно

изобразить в виде простого тетраэдра.

Как построена молекула льда?

Никаких особых молекул льда нет. Молекулы воды благодаря своему замечательному строению сое­динены в куске льда друг с другом так, что каждая из них связана и окружена четырьмя другими молеку­лами. Это приводит к возникновению очень рыхлой структуры льда, в которой остается очень много сво­бодного объема. Правильное кристаллическое строение льда выражается в изумительном изяществе снежинок и в красоте морозных узоров на замерзших оконных стеклах.

B н u зу - схематическое расположение атомных ядер водорода и кислорода в молекулах воды, образовавших кристаллическую решетку льда. Вверху - молекулы воды, образовавшие ледя­ной кристалл с сохранением масштабов электронных оболочек. Обратите внимание на рыхлую структуру льда.

Как построены молекулы воды в воде?

К сожалению, этот очень важный вопрос изучен далеко не достаточно. Строение молекул в жидкой воде очень сложно. Когда лед плавится, его сетчатая

структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул - из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры становятся меньше.

Взаимное притяжение ведет к тому, что средняя величина сложной молекулы воды в жидкой воде зна­чительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обус­ловливает ее необычайные физико-химические свойства,

При какой температуре вода должна кипеть?

Этот вопрос, конечно, странен. Ведь вода кипит при ста градусах. Это знает каждый. Больше того, всем известно, что именно температура кипения воды при давлении в одну атмосферу и выбрана в качестве опорной точки температурной шкалы, условно обоз­наченной 100°Ц.

Однако вопрос поставлен иначе: при какой тем­пературе вода должна кипеть? Ведь температуры кипе­ния различных веществ не случайны. Они зависят от положения элементов, входящих в состав их моле­кул, в периодической системе Менделеева.

Чем меньше атомный номер элемента, чем меньше его атомный вес, тем ниже температура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. Н 2 Те, H 2 Se и H 2 S - хи­мические аналоги воды. Если проследить за темпера­турами их кипения и сопоставить, как изменяются температуры кипения гидридов в других группах периодической системы, то можно довольно точно опре­делить температуру кипения любого гидрида, так же как и любого другого соединения. Сам Менделеев таким способом предсказал свойства химических сое­динений еще не открытых элементов.

Если же определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при 80° ниже нуля. Следовательно, вода кипит приблизительно на сто восемьдесят градусов выше, чем должна кипеть. Температура кипения воды - это наиболее обычное ее свойство - оказывается необычайным и удивительным.

Попробуйте теперь представить себе, что наша вода потеряла вдруг способность образовывать слож­ные, ассоциированные молекулы. Тогда она, вероятно, должна была бы кипеть при той температуре, какая ей положена в соответствии с периодическим законом. Что бы тогда стало на нашей Земле? Океаны внезапно закипят. На Земле не останется ни одной капли воды, а на небе никогда не сможет больше появиться ни одного облачка... Ведь в атмосфере земного шара температура нигде не падает ниже минус 80° - минус 90°Ц.

При какой температуре вода замерзает?

Не правда ли, вопрос не менее странен, чем пре­дыдущий? Ну кто же не знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом слу­чае можно спросить, при какой температуре вода должна замерзать в соответствии со своей химической природой. Оказывается, гидрид кислорода на осно­вании его положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.

Вам также будет интересно:

Крупнейшие морские сражения в истории России (12 фото)
Пусть слово в слово входит круто, Пусть будут камнями слова Пусть слава русского Гангута...
Сонник: к чему снятся родственники, толкование сна для мужчины и женщины
Родственники являются самыми близкими людьми для нас, а потому их участие в нашей жизни...
Сонник видеть во сне ящерицу
по соннику Цветкованеприятная особа; много ящериц - потери через тайных врагов. Значение...
Скачать образец ходатайства о снижении суммы штрафа
Налоги – обязательное бремя для физических и юридических лиц. Чем больше размер выплат, тем...
Образец претензии по досудебному урегулированию споров
Чтобы сразу расставить точки над «i», следует сказать, что любая письменная претензия носит...