Бизнес. Кредиты. Прописка. Материнство. Алименты

К чему снится забеременеть?

К чему снится туман К чему снится туман в поле

Лежать в больнице сонник

К чему снится скорая помощь Толкователь снов сибирской целительницы Н

Отдел развития карьеры тур — основной

Контр олимпиада для студентов финансовых специальностей

Психологический взляд (PsyVision) - викторины, учебные материалы, каталог психологов Психологическая структура и типы личности по фрейду

Джой Пол Гилфорд — Один из основателей психологии творчества Дж гилфорд биография

О грамматических ошибках при построении сложноподчиненных предложений Ошибки в построении сложных предложений

За что Адам и Ева были изгнаны из рая?

Склонение по падежам слова падеж в единственном и множественном числе Падежи существительных во множественном числе

Восемь основных триграмм и-цзин

Всемирная история в лицах Царь лидии крёз и солон

Гороскоп для стрельцов на 6 сентябряг

Нумерология денег и богатства

Описание фотосинтеза. Уроки биологии: что такое фотосинтез

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу листьев деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.

Фотосинтез - это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах.

Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Основная роль фотосинтезирующих организмов:

1) трансформация энергии солнечного света в энергию химических связей органических соединений;

2) насыщение атмосферы кислородом;

В результате фотосинтеза на Земле образуется 150 млрд. т. органического веществаи выделяется около 200 млрд. т свободногокислородав год. Он препятствует увеличению концентрацииCO2в атмосфере, предотвращая перегрев Земли (парниковый эффект).

Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения (кислородно-озоновый экран атмосферы).

В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом

Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существования всего живого. Следовательно, роль фотосинтеза является планетарной.

Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

Суммарная реакция фотосинтеза

СО 2 2 О = (СН 2 О) + О 2 .

Химию фотосинтеза описывают следующими уравнениями:

Фотосинтез – 2 группы реакций:

    световая стадия (зависят от освещенности)

    темновая стадия (зависит от температуры).

Обе группы реакций протекают одновременно

Фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений.

Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы.

Молекула хлорофилла поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра.

Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов.

Пигменты организованы в фотосистемы (антенные поля по улавливанию света) – содержащие по 250–400 молекул разных пигментов.

Фотосистема состоит из:

    реакционного центра фотосистемы (молекула хлорофилла а),

    антенных молекул

Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

У растений:

    фотосистема 1 (максимум поглощения света на длине волны 700 нм - Р700)

    фотосистема 2 (максимум поглощения света на длине волны 680 нм - Р680

Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.

Две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием .

Суммарное уравнение для нециклического фотофосфорилирования :

Ф - условное обозначение остатка фосфорной кислоты

Цикл начинается с фотосистемы 2.

1) антенные молекулы улавливают фотон и передают возбуждение молекуле активного центра Р680;

2) возбужденная молекула Р680 отдает два электрона кофактору Q при этом она окисляется и приобретает положительный заряд;

Кофактор (cofactor). Кофермент или любое другое вещество, необходимое для выполнения ферментом его функции

Коферменты (коэнзимы) [от лат. co (cum) - вместе и ферменты], органические соединения небелковой природы, участвующие в ферментативной реакции в качестве акцепторов отдельных атомов или атомных групп, отщепляемых ферментом от молекулы субстрата, т.е. для осуществления каталитического действия ферментов. Эти веществава, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны. Иногда под Коферментами подразумевают любые низкомолекулярные вещества, участие которых необходимо для проявления каталитического действия фермента, в т. ч. и ионы, напр. К + , Mg 2+ и Мn 2+ . Располагаются оферменты. в активном центре фермента и вместе с субстратом и функциональными группами активного центра образуют активированный комплекс.

Для проявления каталитической активности большинству ферментов необходимо наличие кофермента. Исключение составляют гидролитические ферменты (например, протеазы, липазы, рибонуклеаза), выполняющие свою функцию в отсутствие кофермента.

Молекула восстанавливается Р680 (под действием ферментов),. При этом вода диссоциирует на протоны и молекулярный кислород, т.е. вода является донором электронов, который обеспечивает восполнение электронов в Р 680.

ФОТОЛИЗ ВОДЫ - расщепление молекулы воды, в частности в процессе фотосинтеза. Вследствие фотолиза воды образуется кислород, выделяющийся зелеными растениями на свету.

История открытия удивительного и такого жизненного важного явления, как фотосинтез уходит корнями глубоко в прошлое. Более четырех веков назад в 1600 году бельгийский ученый Ян Ван - Гельмонт поставил простейший эксперимент. Он поместил веточку ивы в мешок, где находилось 80 кг земли. Ученый зафиксировал первоначальный вес ивы, и затем на протяжении пяти лет поливал растение исключительно дождевой водой. Каково же было удивление Яна Ван - Гельмонта, когда он повторно взвесил иву. Вес растения увеличился на 65 кг, причем масса земли уменьшился всего на 50 гр! Откуда растение взяло 64 кг 950 гр питательных веществ для ученого осталось загадкой!

Следующий значимый эксперимент на пути открытия фотосинтеза принадлежал английскому химику Джозефу Пристли. Ученый посадил под колпак мышь, и через пять часов грызун умер. Когда же Пристли поместил с мышью веточку мяты и также накрыл грызуна колпаком, мышь осталась живой. Этот эксперимент навел ученого на мысль о том, что существует процесс, противоположный дыханию. Ян Ингенхауз в 1779 году установил тот факт, что только зеленые части растений способны выделять кислород. Через три года швейцарский ученый Жан Сенебье доказал, что углекислый газ, под воздействием солнечных лучей, разлагается в зеленых органоидах растений. Спустя всего пять лет французский ученый Жак Буссенго, проводя лабораторные исследования, обнаружил тот факт, что поглощение растениями воды также происходит и при синтезе органических веществ. Эпохальное открытие в 1864 году совершил немецкий ботаник Юлиус Сакс. Ему удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции1:1.

Фотосинтез - один из самых значимых биологических процессов

Говоря научным языком, фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, связывание) — это процесс, при котором из углекислого газа и воды на свету образуются органические вещества. Заглавная роль в этом процессе принадлежит фотосинтетическим сегментам.

Если говорить образно, то лист растения можно сравнить лабораторией, окна которой выходят на солнечную сторону. Именно в ней происходит образование органических веществ. Этот процесс является основой существования всего живого на Земле.

Многие резонно зададут вопрос: чем дышат люди, живущие в городе, где не то что дерева, и травинки днем с огнем не сыщешь. Ответ очень прост. Дело в том, что на долю наземных растений приходится всего 20% выделяемого растениями кислорода. Главенствующую роль в выработке кислорода в атмосферу играют морские водоросли. На их долю приходится 80% от вырабатываемого кислорода. Говоря языком цифр, и растения, и водоросли ежегодно выделяют в атмосферу 145 млрд. тонн (!) кислорода! Недаром мировой океан называют «легкими планеты».

Общая формула фотосинтеза выглядит следующим образом:

Вода + Углекислый газ + Свет → Углеводы + Кислород

Для чего нужен фотосинтез растениям?

Как мы уяснили, фотосинтез - это необходимое условие существования человека на Земле. Однако это не единственная причина, по которой фотосинтезирующие организмы производят активную выработку кислорода в атмосферу. Дело в том, что и водоросли, и растения ежегодно образуют более 100 млрд. органических веществ (!), которые составляют основу их жизнедеятельности. Вспоминая эксперимент Яна Ван-Гельмонта мы понимаем, что фотосинтез - это основа питания растений. Научно доказано, что 95% урожая определяют органические вещества, полученные растением в процессе фотосинтеза, и 5% - те минеральные удобрения, которые садовод вносит в почву.

Современные дачники основное внимание уделяют почвенному питанию растений, забывая о его воздушном питании. Неизвестно, какой урожай могли бы получить садоводы, если бы они внимательно относились к процессу фотосинтеза.

Однако ни растения, ни водоросли не могли бы так активно производить кислород и углеводы, не будь у них удивительного зеленого пигмента - хлорофилла.

Тайна зеленого пигмента

Главное отличие клеток растения от клеток иных живых организмов - это наличие хлорофилла. К слову сказать, именно он является виновником того, что листья растений окрашены именно в зеленый цвет. Это сложное органическое соединение обладает одним удивительным свойством: оно способно поглощать солнечный свет! Благодаря хлорофиллу становится возможны и процесс фотосинтеза.

Две стадии фотосинтеза

Говоря простым языком, фотосинтез представляет собой процесс, при котором поглощенные растением вода и углекислый газ на свету при помощи хлорофилла образуют сахар и кислород. Таким образом, неорганические вещества удивительным образом превращаются в органические. Полученный в результате преобразования сахар является источником энергии растений.

Фотосинтез имеет две стадии: световую и темновую.

Световая фаза фотосинтеза

Осуществляется на мембранах тилакойдов.

Тилакойд - это структуры, ограниченные мембраной. Они располагаются в строме хлоропласта.

Порядок событий световой стадии фотосинтеза:

  1. На молекулу хлорофилла попадает свет, который затем поглощается зеленым пигментом и приводит его в возбужденное состояние. Входящий в состав молекулы электрон переходит на более высокий уровень, участвует в процессе синтеза.
  2. Происходит расщепление воды, в ходе которого протоны под воздействием электронов превращаются в атомы водорода. Впоследствии они расходуются на синтез углеводов.
  3. На завершающем этапе световой стадии происходит синтез АТФ (Аденозинтрифосфат). Это органическое вещество, которое играет роль универсального аккумулятора энергии в биологических системах.

Темновая фаза фотосинтеза

Местом протекания темновой фазы являются строму хлоропластов. Именно в ходе темновой фазы происходит выделение кислорода и синтез глюкозы. Многие подумают, что такое название эта фаза получила потому что процесс, происходящие в рамках этого этапа осуществляются исключительно в ночное время. На самом деле, это не совсем верно. Синтез глюкозы происходит круглосуточно. Дело в том, что именно на данном этапе световая энергия больше не расходуется, а значит, она попросту не нужна.

Значение фотосинтеза для растений

Мы уже определили тот факт, что фотоинтез нужен растениям ничем не меньше, чем нам. О масштабах фотосинтеза очень просто говорить языком цифр. Ученые рассчитали, что только растения суши запасают столько солнечной энергии, сколько могли бы израсходовать 100 мегаполисов в течение 100 лет!

Дыхание растений - это процесс, противоположный фотосинтезу. Смысл дыхания растений заключается в освобождении энергии в процессе фотосинтеза и направление ее на нужды растений. Говоря простым языком, урожай - это разница между фотосинтезом и дыханием. Чем больше фотосинтез и ниже дыхание, тем больше урожай, и наоборот!

Фотосинтез - это удивительный процесс, который делает возможной жизнь на Земле!

Со школьной скамьи понятие фотосинтез ассоциируется с зеленым цветом. Это цвет пигмента под названием хлорофилл. Без его скопления в листьях процесс фотосинтеза не возможен. Как же выживает белая секвойя?

Фотосинтез растений зиждется на 0,4% световых лучей. Половина из них не доходит до поверхности планеты. Из оставшихся для фотосинтеза подходит только 1/8. Работают ограничения по длине световой волны. Из подходящих лучей растения забирают 0,4%.

Если переводить в энергию, это 1% от ее общего количества. Привычное течение фотосинтеза проходит под действием света солнца. Однако, искусственные лучи растения тоже научились использовать.

Световой фотосинтез сводится к получению глюкозы. Она идет на питание . Побочный продукт реакции — кислород. Он выбрасывается представителями флоры во внешнюю среду, пополняя атмосферу Земли.

Получаются кислород и глюкоза в ходе реакции меж углекислым газом и водой. Хлорофилл в этом взаимодействии – своеобразный катализатор. Без него реакция не возможна.

Интересно, что хлорофилл встречается только в растениях. Функции, возложенные на пигмент, напоминают работу крови в организме животных. Хлорофилл подобен молекуле гемоглобина, но с магнием в центре.

В клетках же человеческой крови задействовано железо. Тем не менее, на организмы людей хлорофилл оказывает близкое к гемоглобину действие, а именно, повышает уровень кислорода крови и ускоряет обмен азота.

Реакция фотосинтеза может протекать быстро, или медленно. Все зависит от условий среды. Важны: интенсивность светового потока, температура воздуха, его насыщение углекислым газом и кислородом. Идеалом считается достижение точки компенсации. Так называют совпадение скоростей дыхания растения и выделения им кислорода.

Если свет в клетки хлоропласты, в коих скапливается хлорофилл, поступает сверху, то воду для реакции растения выкачивают из почвы. Вот зачем нужен полив растений. Недостаток влаги тормозит реакции фотосинтеза. В итоге, растение желтеет, то есть теряет хлорофилл.

Полей представителя флоры в этот момент, листья не зазеленеют. Выкачивать воду из почвы тоже помогает хлорофилл. Получается замкнутый круг. Нет полива – нет хлорофилла, нет хлорофилла – нет доставки воды в растение.

Теперь, уделим внимание глюкозе. Раз зелень вырабатывает ее из воды и углекислого газа, значит, из неорганического получается органика. Присоединяя к сахару то фосфор, то серу, то азот, растения производят витамины, жиры, белки, крахмалы. Дополнения к глюкозе травы да деревья берут из почвы. Элементы поступают растворенными в воде.

Фазы фотосинтеза

Фазы фотосинтеза – это деление процесса на фотолиз и восстановительную реакцию. Первый протекает на свету и сводится к выделению водорода. Кислород служит побочным продуктом реакции, однако, тоже нужным растению. Оно использует газ в процессе дыхания.

Световая фаза фотосинтеза возбуждает хлорофилл. От переизбытка энергии, его электрон отрывается и начинает перемещение по цепи органических соединений. В ходе путешествия частица способствует синтезу аденозиндифосфорной кислоты из аденозинтрифосфорной.

На это уходит данная электрону энергия. АДФ нужна для образования растением нуклеотидов. Они входят в нуклеиновые кислоты, без которых не возможен метаболизм представителей флоры.

Растратив энергию, электрон возвращается к молекуле хлорофилла. Эта клетка фотосинтеза вновь захватывает квант света. Уставший от работы электрон подкрепляется ею, опять отправляясь на дело. Такова световая фаза процесса. Однако, он не останавливается и в темноте.

Темновой фотосинтез направлен на захват из внешней среды уже углекислого газа. Вместе с водородом он участвует в образовании 6-углеродного сахара. Это и есть глюкоза. Этот результат фотосинтеза сопровождается, так же, образованием веществ, помогающих захватывать новые порции углекислого газа.

Захватываются они опять же, хлоропластами. Те тратят энергию, накопленную за день. Ресурс идет на связывание углекислого газа с рибулозобисфосфатом. Это 5-углеродный сахар. Реакция дает две молекулы фосфоглицериновой кислоты.

В каждой из них по 3 атома углерода. Это один из этапов цикла Кальвина. Он протекает в строме, то есть подстилке хлоропластов. Состоит цикл из трех реакций. Сначала, углекислый газ присоединяется к рубулозо-1,5-дифосфату.

Для реакции обязательно присутствие рубулозобифосфата-карбоксилазы. Это фермент. В его присутствии рождается гексоза. Из нее и получаются молекулы фосфоглицериновой кислоты.

После получения фосфоглицеринового соединения растение восстанавливает его до глицеральдегида-3-фосфата. Его молекулы идут на два «направления». В первом образуется глюкоза, а во втором рубулозо-1,5-дифосфат. Он, как помним, подхватывает газ углекислый.

Фотосинтез на обеих стадиях протекает в растениях активно, поскольку те приспособились захватывать днем максимальное количество энергии солнца. Вспомним школьные классы. Фотосинтезу посвящены несколько уроков ботаники.

Учителя рассказывают, почему у большинства растений плоские и широкие листья. Так представители флоры увеличивают площадь для улавливания квантов света. Не зря и люди сделали солнечные батареи широкими, но плоскими.

Фотосинтез углекислого газа

Углекислый газ проникает в растения через устица. Это подобие пор в листьях, стволах. Процесс всасывания газа и выпуска после через те же устица кислорода напоминает дыхание у людей.

Разница лишь в чередовании стадий. Люди вдыхают кислород, а выдыхают углекислый газ. У растений все наоборот. Так на планете удерживается равновесие двух газов в атмосфере.

Продукты фотосинтеза несут в себе энергию солнца. Животные перерабатывать ее не умеют. Съесть растения – единственная возможность «зарядиться» от дневного светила.

Перерабатывая углекислое соединение, растения способны давать людям и животным в два раза больше. Представители флоры работают с 0,03% газа в атмосфере. Как видно, углекислый газ в ней не из преобладающих.

В искусственных условиях ученые доводили процент углекислого вещества в воздухе до 0,05%. Огурцы, при этом, давали в 2 раза больше плодов. Так же реагировали на изменения , .

Уровень углекислого газа ученые повышали, сжигая в теплицах опилки и прочие отходы деревообрабатывающей промышленности. Интересно, что при концентрации газа в 0,1% растения уже не были рады.

Многие виды начинали болеть. У помидоров, к примеру, в атмосфере с переизбытком углекислого соединения начинали желтеть и скручиваться листья. Это еще одно подтверждение опасности перенасыщения атмосферы CO 2 . Продолжая вырубку лесов и развитие промышленности, человек рискует поставить оставшиеся растения в непригодные для них условия.

Повышать уровень углекислого газа до оптимального можно не только путем сжигания отходов древесины, но и внося в почву удобрения. Они провоцируют размножение бактерий.

Многие микроорганизмы вырабатывают углекислое соединение. Сосредотачиваясь у земли, оно тут же захватывается растениями, идя на благо представителей флоры и всего населения Земли.

Значение фотосинтеза

Если допустить повышение уровня углекислого газа в нижних слоях атмосферы повсеместно, а не только в экспериментальных теплицах, наступит парниковый эффект. Это то самое глобальное потепление, которое то ли уже приближается, то ли и не «светит».

Ученые не сходятся во мнениях. Если говорить о фактах, говорящих в пользу парникового эффекта, вспоминается таяние льдов Антарктики. Там обитают белые медведи. Уже несколько лет они включены в .

Частью жизни медведей исторически является преодоление водных широт на пути к новым ледникам. Устремляясь к ним, животные все чаще выбиваются из сил, так и не достигнув цели. Водные просторы увеличиваются.

Доплыть до клочков суши становится все сложнее. Порой, медведи гибнут в пути. Порой, краснокнижные хищники добираются до земли, но изможденными. Сил на охоту и переходов уже по твердой почве не остается.

Из вышесказанного делаем вывод: без фотосинтеза или с сокращением его доли, уровень углекислого газа в атмосфере спровоцирует парниковый эффект. Изменится не только климат планеты, но и состав ее обитателей, их облик, приспособления к окружающей среде.

Так будет до тех пор, пока доля углекислого соединения в воздухе не достигнет критического 1%. Далее, под вопрос встает сам фотосинтез. Воды мировых океанов могут остаться единственным его источником. Водоросли ведь тоже «дышат». Клетки, хранящие хлорофилл, у них другие.

Однако, суть процесса фотосинтеза у наземных и водных растений одна. Концентрация углекислого газа в атмосфере не обязательно передается водной среде. В ней баланс может сохраниться.

Некоторые ученые предполагают, что при постепенном увеличении доли углекислого газа в воздухе, представители флоры смогут приспособиться к новым условиям. Помидоры не станут сворачивать листья, капитулируя перед реалиями будущего.

Возможно, растения эволюционируют, научившись перерабатывать большее количество СО 2 . Догадка ученых относится к категории «лучше не проверять». Слишком рискованно.

Значение фотосинтеза связано не только с поддержанием жизни самих растений и насыщением атмосферы Земли кислородом. Ученые бьются над искусственным проведением реакций.

Расщепляемая под действием радиации солнца на водород и кислород вода – источник энергии. Энергия эта, в отличие от получаемой из нефтепродуктов и каменного угля, экологически чистая, безопасная.

Где происходит фотосинтез – не важно. Важна энергия, которую он несет с собой. Пока, человек получает ресурс, лишь поглощая растительную пищу. Возникает вопрос, как же выживают плотоядные? Они не зря охотятся на травоядных, а не себе подобных. В мясе животных, питающихся травами и листьями, сохраняется часть их энергии.

Кроме энергии фотосинтеза важны и его продукты. Кислород, к примеру, идет не только на дыхание животных, но и на образования озонового слоя. Он располагается в стратосфере Земли, на границе с космосом.

Озон – одна из модификаций кислорода, которую тот принимает, поднимаясь на тысячекилометровые высоты. Здесь элемент борется с радиацией Солнца. Не будь озонового слоя, излучение светила достигало бы поверхности планеты в опасных для всего живого дозах.

Интересно, что в деле поддержания баланса газов на планете могут помочь некоторые беспозвоночные. Слизень Elisia Chloroti, к примеру, научился ассимилировать хлоропласты водорослей.

Обитатель морей съедает их, «приручая» клетки с хлорофиллом в слизистой своего желудка. Геном слизня кодирует белки, необходимые зеленому пигменту для фотосинтеза.

Выработанные вещества поставляются хлоропластам и те «кормят» беспозвоночное сладенькой глюкозой. На ней и люди некоторое время способны выживать. Достаточно вспомнить больницы, где ослабленным вводят глюкозу внутривенно.

Сахар – основной источник энергии и, главное, быстрый. Цепочка преобразования глюкозы в чистую энергию короче, чем цепь преобразований жиров, белков. Конечно, сахар научились синтезировать искусственно.

Но, многие ученые склоняются к мнению, что полезнее для организма глюкоза растений, фруктов и овощей. Это подобно эффекту витаминов. У синтетических и природных один состав, но чуть разниться положение атомов. Опыты доказывают, что аптечный витамин С пользу дает сомнительную, а вот то же вещество из лимона или капусты – бесспорную.

Бесспорна и польза фотосинтеза. Он привычен и, одновременно, хранит еще много тайн. Познавайте их, дабы обеспечить счастливое будущее и себе, и планете в целом.

Бесхлорофилльный фотосинтез

Пространственная локализация

Фотосинтез растений осуществляется в хлоропластах : обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов , стеблей , однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист . В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем.

Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа). Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис , однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие CAM фотосинтез, сформировали особые механизмы для активной ассимиляции углекислого газа.

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые соединяясь друг с другом образуют тилакоиды , которые в свою очередь группируются в стопки, называемые граны . Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая стадия

В темновой стадии с участием АТФ и НАДФН происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Основные статьи: Цикл Хетча-Слэка-Карпилова , С4-фотосинтез

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

САМ фотосинтез

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощенные лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль . Это означало, что кислород в фотосинтезе образуется полностью из воды, что экспериментально подтвердил в А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO 2 была раскрыта Мельвином Кальвином с использованием изотопов углерода в конце 1940-х , за эту работу в ему была присуждена Нобелевская премия .

Прочие факты

См. также

Литература

  • Холл Д., Рао К. Фотосинтез: Пер. с англ. - М.: Мир, 1983.
  • Физиология растений / под ред. проф. Ермакова И. П. - М.: Академия, 2007
  • Молекулярная биология клетки / Альбертис Б., Брей Д. и др. В 3 тт. - М.: Мир, 1994
  • Рубин А. Б. Биофизика. В 2 тт. - М.: Изд. Московского университета и Наука, 2004.
  • Чернавская Н. М.,

Вам также будет интересно:

Плевать: к чему снится сон
Слюной называют биологическую жидкость человеческого организма, которая выделяется во рту....
Толкование в перевернутом положении
Дурак является одной из самых значительных карт в Таро, которая представляет человека,...
К чему снится Судья во сне?
Судебное разбирательство - это малоприятный процесс, который сопровождается большой потерей...
Панчо в мультиварке
Торт «Панчо» банановый Одним из самых вкусных и известных десертов является торт «Панчо» -...
Варим вкусную уху из головы лосося
Пошаговый рецепт приготовления вкуснейшей и низкокалорийной ухи из головы лосося...